Practical Integer-to-Binary Mapping for Quantum Annealers

نویسندگان

  • Sahar Karimi
  • Pooya Ronagh
چکیده

Recent advancements in quantum annealing hardware and numerous studies in this area suggests that quantum annealers have the potential to be effective in solving unconstrained binary quadratic programming problems. Naturally, one may desire to expand the application domain of these machines to problems with general discrete variables. In this paper, we explore the possibility of employing quantum annealers to solve unconstrained quadratic programming problems over a bounded integer domain. We present an approach for encoding integer variables into binary ones, thereby representing unconstrained integer quadratic programming problems as unconstrained binary quadratic programming problems. To respect some of the limitations of the currently developed quantum annealers, we propose an integer encoding, named bounded-coefficient encoding, in which we limit the size of the coefficients that appear in the encoding. Furthermore, we propose an algorithm for finding the upper bound on the coefficients of the encoding using the precision of the machine and the coefficients of the original integer problem. Finally, we experimentally show that this approach is far more resilient to the noise of the quantum annealers compared to traditional approaches for the encoding of integers in base two.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compiling planning into quantum optimization problems: a comparative study

One approach to solving planning problems is to compile them to another problem for which powerful off-the-shelf solvers are available; common targets include SAT, CSP, and MILP. Recently, a novel optimization technique has become available: quantum annealing (QA). QA takes as input problem instances encoded as Quadratic Unconstrained Binary Optimization (QUBO). Early quantum annealers are now ...

متن کامل

Unraveling Quantum Annealers using Classical Hardness

Recent advances in quantum technology have led to the development and manufacturing of experimental programmable quantum annealing optimizers that contain hundreds of quantum bits. These optimizers, commonly referred to as 'D-Wave' chips, promise to solve practical optimization problems potentially faster than conventional 'classical' computers. Attempts to quantify the quantum nature of these ...

متن کامل

Global Warming: Temperature Estimation in Annealers

Sampling from a Boltzmann distribution is NP-hard and so requires heuristic approaches. Quantum annealing is one promising candidate. The failure of annealing dynamics to equilibrate on practical time scales is a well understood limitation, but does not always prevent a heuristically useful distribution from being generated. In this paper, we evaluate several methods for determining a useful op...

متن کامل

BQIABC: A new Quantum-Inspired Artificial Bee Colony Algorithm for Binary Optimization Problems

Artificial bee colony (ABC) algorithm is a swarm intelligence optimization algorithm inspired by the intelligent behavior of honey bees when searching for food sources. The various versions of the ABC algorithm have been widely used to solve continuous and discrete optimization problems in different fields. In this paper a new binary version of the ABC algorithm inspired by quantum computing, c...

متن کامل

Recent developments in quantum annealing

We review and comment on some of the recent developments in quantum annealing. In particular, we will comment on recent findings that quantum annealers may be best suited for finding a class of approximate solutions and on Google’s announcement of quantum annealers outperforming classical annealers by significant margins. This is not meant to be a comprehensive review and we apologize in advanc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1706.01945  شماره 

صفحات  -

تاریخ انتشار 2017